

AV8 Reactive Polymer Coating SJA AeroCare Corp.

Part Number: AV8 Version No: 2.6 Safety Data Sheet according to OSHA HazCom Standard (2012) requirements Issue Date: 10/28/2024 Print Date: 11/11/2024 L.GHS.USA.EN

SECTION 1 Identification

Draduat Identifier

Product identifier	
Product name	AV8
Synonyms	Not Available
Other means of identification	

Recommended use of the chemical and restrictions on use

Relevant identified uses	Paint Protection Coating Used For Detailing
	· · ······g · · · · · · · · · · · · ·

Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party

Registered company name	SJA AeroCare Corp.	
Address	830 East 2 nd Street, STE 7000 #19234, Casper, WY 82609 USA	
Telephone	571-7722	
Fax	708-425-4645	
Website	Website www.av8protection.com	
Email	Email info@av8protection.com	

Emergency phone number

Association / Organisation	SJA AeroCare
Emergency telephone numbers	719-671-7722
Other emergency telephone numbers	708-251-1045

SECTION 2 Hazard(s) identification

Classification of the substance or mixture

NFPA 704 diamond

Note: The hazard category numbers found in GHS classification in section 2 of this SDSs are NOT to be used to fill in the NFPA 704 diamond. Blue = Health Red = Fire Yellow = Reactivity White = Special (Oxidizer or water reactive substances)

Classification

Flammable Liquids Category 4, Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 2A, Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3

Page 2 of 19 Issue Date: 10/28/2024 Version No: 2.6 Print Date: 11/11/2024

Hazard pictogram(s)

Signal word

Warning

Hazard statement(s)

H227	Combustible liquid.	
H315	Causes skin irritation.	
H319	Causes serious eye irritation.	
H336	May cause drowsiness or dizziness.	

Hazard(s) not otherwise classified

Not Applicable

Precautionary statement(s) Prevention

P210	P210 Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.	
P271 Use only outdoors or in a well-ventilated area.		
P261	Avoid breathing mist/vapours/spray.	
P280 Wear protective gloves, protective clothing, eye protection and face protection.		
P264 Wash all exposed external body areas thoroughly after handling.		

Precautionary statement(s) Response

P370+P378	In case of fire: Use water spray/fog to extinguish.	
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P312	P312 Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.	
P337+P313	P337+P313 If eye irritation persists: Get medical advice/attention.	
P302+P352	P302+P352 IF ON SKIN: Wash with plenty of water and soap.	
P304+P340 IF INHALED: Remove person to fresh air and keep comfortable for breathing.		
P332+P313	P332+P313 If skin irritation occurs: Get medical advice/attention.	
P362+P364	Take off contaminated clothing and wash it before reuse.	

Precautionary statement(s) Storage

P403+P235 Store in a well-ventilated place. Keep cool.		
P405 Store locked up.		
P403+P233	Store in a well-ventilated place. Keep container tightly closed.	

Precautionary statement(s) Disposal

P501 Dispose of	contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
92704-41-1	5-10	kaolin, calcined
64742-48-9.	25-50	naphtha petroleum, isoparaffin, hydrotreated
1338-39-2	1-5	Fatty acids, C4-24, esters with sorbitan
1112-39-6	5-10	dimethoxydimethylsilane

SECTION 4 First-aid measures

Page 3 of 19 Issue Date: 10/28/2024 Version No: 2.6 Print Date: 11/11/2024

Description of first aid measures

Eye Contact	If this product comes in contact with the eyes: • Wash out immediately with fresh running water. • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. • Seek medical attention without delay; if pain persists or recurs seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary.
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. Avoid giving milk or oils. Avoid giving alcohol. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

Most important symptoms and effects, both acute and delayed

See Section 11

Indication of any immediate medical attention and special treatment needed

For petroleum distillates

- · In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption decontamination (induced emesis or lavage) is controversial and should be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent aspiration.
- · Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function.
- · Positive pressure ventilation may be necessary.
- · Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia.
- · After the initial episode,individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment Individuals with chronic pulmonary disease will be more seriously impaired, and recovery from inhalation exposure may be complicated.
- · Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications.
- · Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur.Careful consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators.

SECTION 5 Fire-fighting measures

Extinguishing media

- ▶ Foam
- Dry chemical powder.
- ▶ BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Special protective equipment and precautions for fire-fighters

Fire Fighting

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- ▶ DO NOT approach containers suspected to be hot.
- ▶ Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.

Version No: 2.6

► Equipment should be thoroughly decontaminated after use.

AV8

WARNING: In use may form flammable/ explosive vapour-air mixtures.
WARNING:

Can become highly flammable in use.
Avoid evaporation.
Combustible. Will burn if ignited.
Combustion products include:
carbon monoxide (CO)

Issue Date: 10/28/2024

Print Date: 11/11/2024

Fire/Explosion Hazard

May emit corrosive fumes.

carbon dioxide (CO2) silicon dioxide (SiO2)

May emit poisonous fumes.

other pyrolysis products typical of burning organic material.

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	Clean up all spills immediately. Avoid contact with skin and eyes. Wear impervious gloves and safety goggles. Trowel up/scrape up. Place spilled material in clean, dry, sealed container. Flush spill area with water.
Major Spills	 Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Neutralise/decontaminate residue (see Section 13 for specific agent). Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

Safe handling

The conductivity of this material may make it a static accumulator., A liquid is typically considered nonconductive if its conductivity is below 100 pS/m and is considered semi-conductive if its conductivity is below 10 000 pS/m., Whether a liquid is nonconductive or semi-conductive, the precautions are the same., A number of factors, for example liquid temperature, presence of contaminants, and anti-static additives can greatly influence the conductivity of a liquid.

- ▶ Containers, even those that have been emptied, may contain explosive vapours.
- ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers.
- $\boldsymbol{\cdot}$ Electrostatic discharge may be generated during pumping this may result in fire.
- Ensure electrical continuity by bonding and grounding (earthing) all equipment.
- Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then <= 7 m/sec).
- Avoid splash filling.
- Do NOT use compressed air for filling discharging or handling operations.
- · Wait 2 minutes after tank filling (for tanks such as those on
- · road tanker vehicles) before opening hatches or manholes.
- Wait 30 minutes after tank filling (for large storage tanks)
- before opening hatches or manholes. Even with proper
- · grounding and bonding, this material can still accumulate an
- $\boldsymbol{\cdot}$ electrostatic charge. If sufficient charge is allowed to
- · accumulate, electrostatic discharge and ignition of flammable
- · air-vapour mixtures can occur. Be aware of handling
- · operations that may give rise to additional hazards that result
- $\boldsymbol{\cdot}$ from the accumulation of static charges. These include but are

Page 5 of 19

AV8

Part Number: AV8 Version No: 2.6

- not limited to pumping (especially turbulent flow), mixing,

- filtering, splash filling, cleaning and filling of tanks and
- containers, sampling, switch loading, gauging, vacuum truck
- · operations, and mechanical movements. These activities may
- · lead to static discharge e.g. spark formation. Restrict line
- velocity during pumping in order to avoid generation of
- electrostatic discharge (= 1 m/s until fill pipe submerged to
- · twice its diameter, then = 7 m/s). Avoid splash filling.
- Do NOT use compressed air for filling, discharging, or handling operations
- ▶ Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- ▶ DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- ▶ When handling, **DO NOT** eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained

Issue Date: 10/28/2024 Print Date: 11/11/2024

Other information

- Store in original containers.
- ▶ Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- ▶ Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container

- Metal can or drum
- Packaging as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

Low molecular weight alkanes:

- ▶ May react violently with strong oxidisers, chlorine, chlorine dioxide, dioxygenyl tetrafluoroborate.
- ▶ May react with oxidising materials, nickel carbonyl in the presence of oxygen, heat.
- Are incompatible with nitronium tetrafluoroborate(1-), halogens and interhalogens
- ▶ may generate electrostatic charges, due to low conductivity, on flow or agitation.
- Avoid flame and ignition sources

Storage incompatibility

Redox reactions of alkanes, in particular with oxygen and the halogens, are possible as the carbon atoms are in a strongly reduced condition. Reaction with oxygen (if present in sufficient quantity to satisfy the reaction stoichiometry) leads to combustion without any smoke, producing carbon dioxide and water. Free radical halogenation reactions occur with halogens, leading to the production of haloalkanes. In addition, alkanes have been shown to interact with, and bind to, certain transition metal complexes. Interaction between chlorine and ethane over activated carbon at 350 deg C has caused explosions, but added carbon dioxide reduces the risk. The violent interaction of liquid chlorine injected into ethane at 80 deg C/10 bar becomes very violent if ethylene is also present A mixture prepared at -196 deg C with either methane or ethane exploded when the temp was raised to -78 deg C. Addition of nickel carbonyl to an n-butane-oxygen mixture causes an explosion at 20-40 deg C. Alkanes will react with steam in the presence of a nickel catalyst to give hydrogen.

Avoid reaction with oxidising agents

- Must not be stored together
- May be stored together with specific preventions
- May be stored together

Note: Depending on other risk factors, compatibility assessment based on the table above may not be relevant to storage situations, particularly where large volumes of dangerous goods are stored and handled. Reference should be made to the Safety Data Sheets for each substance or article and risks assessed accordingly.

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

Issue Date: 10/28/2024 Page 6 of 19 Print Date: 11/11/2024

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
US OSHA Permissible Exposure Limits (PELs) Table Z-1	kaolin, calcined	Particulates Not Otherwise Regulated (PNOR)- Total dust	15 mg/m3	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-1	kaolin, calcined	Particulates Not Otherwise Regulated (PNOR)- Respirable fraction	5 mg/m3	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-3	kaolin, calcined	Inert or Nuisance Dust: Respirable fraction	5 mg/m3 / 15 mppcf	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-3	kaolin, calcined	Inert or Nuisance Dust: Total Dust	15 mg/m3 / 50 mppcf	Not Available	Not Available	Not Available
US NIOSH Recommended Exposure Limits (RELs)	kaolin, calcined	Particulates not otherwise regulated	Not Available	Not Available	Not Available	See Appendix D
US OSHA Permissible Exposure Limits (PELs) Table Z-1	naphtha petroleum, isoparaffin, hydrotreated	Oil mist, mineral	5 mg/m3	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-1	Fatty acids, C4-24, esters with sorbitan	Particulates Not Otherwise Regulated (PNOR)-Total dust	15 mg/m3	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-1	Fatty acids, C4-24, esters with sorbitan	Particulates Not Otherwise Regulated (PNOR)- Respirable fraction	5 mg/m3	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-3	Fatty acids, C4-24, esters with sorbitan	Inert or Nuisance Dust: Total Dust	15 mg/m3 / 50 mppcf	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-3	Fatty acids, C4-24, esters with sorbitan	Inert or Nuisance Dust: Respirable fraction	5 mg/m3 / 15 mppcf	Not Available	Not Available	Not Available
US NIOSH Recommended Exposure Limits (RELs)	Fatty acids, C4-24, esters with sorbitan	Particulates not otherwise regulated	Not Available	Not Available	Not Available	See Appendix D

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
naphtha petroleum, isoparaffin, hydrotreated	350 mg/m3	1,800 mg/m3	40,000 mg/m3
naphtha petroleum, isoparaffin, hydrotreated	1,100 mg/m3	1,800 mg/m3	40,000 mg/m3
dimethoxydimethylsilane	14 mg/m3	150 mg/m3	920 mg/m3

Ingredient	Original IDLH	Revised IDLH
kaolin, calcined	Not Available	Not Available
naphtha petroleum, isoparaffin, hydrotreated	2,500 mg/m3	Not Available
Fatty acids, C4-24, esters with sorbitan	Not Available	Not Available
dimethoxydimethylsilane	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit
dimethoxydimethylsilane	E	≤ 0.1 ppm
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.	

MATERIAL DATA

For kaolin:

Kaolin dust appears to have fibrogenic potential even in the absence of crystalline silica. Kaolinosis can exist as simple and complicated forms with the latter often associated with respiratory symptoms. Crystalline silica enhances the severity of the pneumoconiosis.

Exposed individuals are NOT reasonably expected to be warned, by smell, that the Exposure Standard is being exceeded.

Odour Safety Factor (OSF) is determined to fall into either Class C, D or E.

The Odour Safety Factor (OSF) is defined as:

Issue Date: **10/28/2024**Print Date: **11/11/2024**

OSF= Exposure Standard (TWA) ppm/ Odour Threshold Value (OTV) ppm

Classification into classes follows:

ClassOSF Description

Over 90% of exposed individuals are aware by smell that the Exposure Standard (TLV-TWA for example) is being reached, even when distracted by

A 550 working activities

26-

B As "A" for 50-90% of persons being distracted

C 1-26 As "A" for less than 50% of persons being distracted

D 0.18-1 10-50% of persons aware of being tested perceive by smell that the Exposure Standard is being reached

E <0.18 As "D" for less than 10% of persons aware of being tested

as octane CAS 111-65-9

The TLV-TWA is thought to be protective against narcotic effects produced at higher concentrations

Odour threshold: 0.25 ppm.

The TLV-TWA is protective against ocular and upper respiratory tract irritation and is recommended for bulk handling of gasoline based on calculations of hydrocarbon content of gasoline vapour. A STEL is recommended to prevent mucous membrane and ocular irritation and prevention of acute depression of the central nervous system. Because of the wide variation in molecular weights of its components, the conversion of ppm to mg/m3 is approximate. Sweden recommends hexane type limits of 100 ppm and heptane and octane type limits of 300 ppm. Germany does not assign a value because of the widely differing compositions and resultant differences in toxic properties.

Odour Safety Factor (OSF) OSF=0.042 (gasoline)

Exposure controls

CARE: Use of a quantity of this material in confined space or poorly ventilated area, where rapid build up of concentrated atmosphere may occur, could require increased ventilation and/or protective gear

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in specific circumstances. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50- 100 f/min)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfewelding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation).	,
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas d (active generation into zone of rapid air motion)	1-2.5 m/s (200- 500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial vinto zone of very high rapid air motion).	elocity 2.5-10 m/s (500- 2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Individual protection measures, such as personal protective equipment

Version No: 2.6

AV8

Issue Date: 10/28/2024 Print Date: 11/11/2024

▶ Safety glasses with side shields. ► Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent] ▶ Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should Eye and face protection include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]. See Hand protection below Skin protection ▶ Wear chemical protective gloves, e.g. PVC. Hands/feet protection ▶ Neoprene rubber gloves **Body protection** See Other protection below Overalls. P.V.C apron. Other protection Barrier cream. Skin cleansing cream. ▶ Eye wash unit.

Respiratory protection

Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS	-	A-PAPR-AUS / Class 1
up to 50 x ES	-	A-AUS / Class 1	-
up to 100 x ES	-	A-2	A-PAPR-2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	White		
Physical state	Gel	Relative density (Water = 1)	0.97
Odour	Not Available	Partition coefficient n- octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	335
pH (as supplied)	7	Decomposition temperature (°C)	Not Applicable
Melting point / freezing point (°C)	Not Applicable	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	100	Molecular weight (g/mol)	Not Available
Flash point (°C)	62	Taste	Not Available
Evaporation rate	0.1 Water=1	Explosive properties	Not Available
Flammability	Combustible.	Oxidising properties	Not Available
Upper Explosive Limit (%)	5.3	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	0.7	Volatile Component (%vol)	25
Vapour pressure (kPa)	0.064	Gas group	Not Available

Part Number: AV8 Page 9 of 19
Version No: 2.6

Solubility in water	Immiscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available
Heat of Combustion (kJ/g)	Not Available	Ignition Distance (cm)	Not Available
Flame Height (cm)	Not Available	Flame Duration (s)	Not Available
Enclosed Space Ignition Time Equivalent (s/m3)	Not Available	Enclosed Space Ignition Deflagration Density (q/m3)	Not Available

AV8

Issue Date: 10/28/2024

Print Date: 11/11/2024

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	Product is considered stable and hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhaled

The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.

Inhalation hazard is increased at higher temperatures.

High inhaled concentrations of mixed hydrocarbons may produce narcosis characterised by nausea, vomiting and lightheadedness. Inhalation of aerosols may produce severe pulmonary oedema, pneumonitis and pulmonary haemorrhage. Inhalation of petroleum hydrocarbons consisting substantially of low molecular weight species (typically C2-C12) may produce irritation of mucous membranes, incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and anaesthetic stupor. Massive exposures may produce central nervous system depression with sudden collapse and deep coma; fatalities have been recorded. Irritation of the brain and/or apnoeic anoxia may produce convulsions. Although recovery following overexposure is generally complete, cerebral micro-haemorrhage of focal post-inflammatory scarring may produce epileptiform seizures some months after the exposure. Pulmonary episodes may include chemical pneumonitis with oedema and haemorrhage. The lighter hydrocarbons may produce kidney and neurotoxic effects. Pulmonary irritancy increases with carbon chain length for paraffins and olefins. Alkenes produce pulmonary oedema at high concentrations. Liquid paraffins may produce anaesthesia and depressant actions leading to weakness, dizziness, slow and shallow respiration, unconsciousness, convulsions and death. C5-7 paraffins may also produce polyneuropathy. Aromatic hydrocarbons accumulate in lipid rich tissues (typically the brain, spinal cord and peripheral nerves) and may produce functional impairment manifested by nonspecific symptoms such as nausea, weakness, fatigue and vertigo; severe exposures may produce inebriation or unconsciousness. Many of the petroleum hydrocarbons are cardiac sensitisers and may cause ventricular fibrillations. Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.

Some aliphatic hydrocarbons produce axonal neuropathies. Isoparaffinic hydrocarbons produce injury to the kidneys of male rats. When albino rats were exposed to isoparaffins at 21.4 mg/l for 4 hours, all animals experienced weakness, tremors, salivation, mild to moderate convulsions, chromodacryorrhoea and ataxia within the first 24 hours. Symptoms disappeared after 24 hours.

Several studies have evaluated sensory irritation in laboratory animals or odor or sensory response in humans. When evaluated by a standard procedure to assess upper airway irritation, isoparaffins did not produce sensory irritation in mice exposed to up to 400 ppm isoparaffin in air. Human volunteers were exposed for six hours to 100 ppm isoparaffin. The subjects were given a self-administered questionnaire to evaluate symptoms, which included dryness of the mucous membranes, loss of appetite, nausea, vomiting, diarrhea, fatigue, headache, dizziness, feeling of inebriation, visual disturbances, tremor, muscular weakness, impairment of coordination or paresthesia. No symptoms associated with solvent exposure were observed. With a human expert panel, odour from liquid imaging copier emissions became weakly discernible at approximately 50 ppm.

Numerous long-term exposures have been conducted in animals with only one major finding observed. Renal tubular damage

has been found in kidneys of male rats upon repeated exposures to isoparaffins. It does not occur in mice or in female rats. This male rat nephropathy has been observed with a number of hydrocarbons, including wholly vaporized unleaded gasoline. The phenomenon has been attributed to reversible binding of hydrocarbon to alpha2-globulin. Since humans do not synthesize alpha2-globulin or a similar protein, the finding is not considered to be of biological significance to man. No clinically significant renal abnormalities have been found in refinery workers exposed to hydrocarbons.

When evaluated for developmental toxicity in rats, isoparaffins were neither embryotoxic nor teratogenic. Isoparaffins were consistently negative on standard bacterial genotoxicity assays. They were also non-genotoxic in *in vivo* mammalian testing for

Part Number: AV8
Version No: 2.6

Page 10 of 19

Issue Date: 10/28/2024
Print Date: 11/11/2024

somatic or germ cell mutations (mouse micronucleus test and rat dominant lethal assay, respectively).

Mullin et al: Jnl Applied Toxicology 10, pp 136-142, 2006

Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination

Accidental ingestion of the material may be damaging to the health of the individual.

Many aliphatic hydrocarbons create a burning sensation because they are irritating to the GI mucosa. Vomiting has been reported in up to one third of all hydrocarbon exposures. While most aliphatic hydrocarbons have little GI absorption, aspiration frequently occurs, either initially or in a semi-delayed fashion as the patient coughs or vomits, thereby resulting in pulmonary effects. Once aspirated, the hydrocarbons can create a severe pneumonitis.

Rats given isoparaffinic hydrocarbons - isoalkanes- (after 18-24 hours fasting) showed lethargy and/or general weakness, ataxia and diarrhea. Symptoms disappeared within 24-28 hours.

Ingestion of petroleum hydrocarbons may produce irritation of the pharynx, esophagus, stomach and small intestine with oedema and mucosal ulceration resulting; symptoms include a burning sensation in the mouth and throat. Large amounts may produce narcosis with nausea and vomiting, weakness or dizziness, slow and shallow respiration, swelling of the abdomen, unconsciousness and convulsions. Myocardial injury may produce arrhythmias, ventricular fibrillation and electrocardiographic changes. Central nervous system depression may also occur. Light aromatic hydrocarbons produce a warm, sharp, tingling sensation on contact with taste buds and may anaesthetize the tongue. Aspiration into the lungs may produce coughing, gagging and a chemical pneumonitis with pulmonary oedema and hemorrhage.

Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterized by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

The material may accentuate any pre-existing dermatitis condition

Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.

Dermally, isoparaffins have produced slight to moderate irritation in animals and humans under occluded patch conditions where evaporation cannot freely occur. However, they are not irritating in non-occluded tests, which are a more realistic simulation of human exposure. They have not been found to be sensitizers in guinea pig or human patch testing. However, occasional rare idiosyncratic sensitization reactions in humans have been reported.

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

The liquid may be miscible with fats or oils and may degrease the skin, producing a skin reaction described as non-allergic contact dermatitis. The material is unlikely to produce an irritant dermatitis as described in EC Directives.

Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals.

Repeated or prolonged eye contact may cause inflammation characterized by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Instillation of isoparaffins into rabbit eyes produces only slight irritation.

Petroleum hydrocarbons may produce pain after direct contact with the eyes. Slight, but transient disturbances of the corneal epithelium may also result. The aromatic fraction may produce irritation and lachrymation.

Long-term exposure to the product is not thought to produce chronic effects adverse to health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimized as a matter of course.

Repeated or prolonged exposure to mixed hydrocarbons may produce narcosis with dizziness, weakness, irritability, concentration and/or memory loss, tremor in the fingers and tongue, vertigo, olfactory disorders, constriction of visual field, paranesthesia's of the extremities, weight loss and anemia and degenerative changes in the liver and kidney. Chronic exposure by petroleum workers, to the lighter hydrocarbons, has been associated with visual disturbances, damage to the central nervous system, peripheral neuropathies (including numbness and paranesthesia's), psychological and neurophysiological deficits, bone marrow toxicities (including hypoplasia possibly due to benzene) and hepatic and renal involvement. Chronic dermal exposure to petroleum hydrocarbons may result in defatting which produces localized dermatoses. Surface cracking and erosion may also increase susceptibility to infection by microorganisms. One epidemiological study of petroleum refinery workers has reported elevations in standard mortality ratios for skin cancer along with a dose-response relationship indicating an association between routine workplace exposure to petroleum or one of its constituents and skin cancer, particularly melanoma. Other studies have been unable to confirm this finding.

Hydrocarbon solvents are liquid hydrocarbon fractions derived from petroleum processing streams, containing only carbon and hydrogen atoms, with carbon numbers ranging from approximately C5-C20 and boiling between approximately 35-370 deg C. Many of the hydrocarbon solvents have complex and variable compositions with constituents of 4 types, alkanes (normal paraffins, isoparaffins, and cycloparaffins) and aromatics (primarily alkylated one- and two-ring species). Despite the compositional complexity, most hydrocarbon solvent constituents have similar toxicological properties, and the overall toxicological hazards can be characterized in generic terms. Hydrocarbon solvents can cause chemical pneumonitis if aspirated into the lung, and those that are volatile can cause acute CNS effects and/or ocular and respiratory irritation at exposure levels exceeding occupational recommendations. Otherwise, there are few toxicologically important effects. The exceptions, n-hexane and nabhthalene, have unique toxicological properties

Animal studies:

No deaths or treatment related signs of toxicity were observed in rats exposed to light alkylate naphtha (paraffinic hydrocarbons) at concentrations of 668, 2220 and 6646 ppm for 6 hrs/day, 5 days/wk for 13 weeks. Increased liver weights and kidney toxicity

Ingestion

Skin Contact

Eye

Chronic

Page 11 of 19 Issue Date: 10/28/2024 Print Date: 11/11/2024

(male rats) was observed in high dose animals. Exposure to pregnant rats at concentrations of 137, 3425 and 6850 ppm did not adversely affect reproduction or cause maternal or foetal toxicity. Lifetime skin painting studies in mice with similar naphthas have shown weak or no carcinogenic activity following prolonged and repeated exposure. Similar naphthas/distillates, when tested at nonirritating dose levels, did not show any significant carcinogenic activity indicating that this tumorigenic response is likely related to chronic irritation and not to dose. The mutagenic potential of naphthas has been reported to be largely negative in a variety of mutagenicity tests. The exact relationship between these results and human health is not known. Some components of this product have been shown to produce a specific, sex hormonal dependent kidney lesion in male rats from repeated oral or inhalation exposure. Subsequent research has shown that the kidney damage develops via the formation of a alpha-2u-globulin, a mechanism unique to the male rat. Humans do not form alpha-2u-globulin, therefore, the kidney effects resulting from this mechanism are not relevant in human.

Durable Polymer	TOXICITY	IRRITATION	
Durable Folylliei	Not Available	Not Available	
	TOXICITY	IRRITATION	
La ella catalaca I	dermal (rat) LD50: >5000 mg/kg ^[1]	Eye: adverse effect observed (irritating) ^[1]	
kaolin, calcined	Inhalation (Rat) LC50: >2.07 mg/l4h ^[1]	Skin: no adverse effect observed (not irritating) ^[1]	
	Oral (Rat) LD50: >2000 mg/kg ^[1]		
	тохісіту	IRRITATION	
naphtha petroleum,	Dermal (rabbit) LD50: >1900 mg/kg ^[1]	Not Available	
araffin, hydrotreated	Inhalation (Rat) LC50: >4.42 mg/L4h ^[1]		
	Oral (Rat) LD50: >4500 mg/kg ^[1]		
	TOXICITY	IRRITATION	
	Dermal (rabbit) LD50: >300 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]	
	Inhalation (Rat) LC50: >5 mg/L4h ^[1]	Skin: no adverse effect observed (not irritating) ^[1]	
	Inhalation (Rat) LC50: >5 mg/L4h ^[1]		
	Inhalation (Rat) LC50: >5 mg/L4h ^[1]		
	Inhalation (Rat) LC50: >5 mg/L4h ^[1]		
	Inhalation (Rat) LC50: >5 mg/L4h ^[1]		
	Inhalation (Rat) LC50: >5.27 mg/l4h ^[1]		
acids, C4-24, esters with sorbitan	Oral (Mouse) LD50; >5000 mg/kg ^[1]		
	Oral (Mouse) LD50; 25000 mg/kg ^[2]		
	Oral (Rat) LD50: >2000 mg/kg ^[1]		
	Oral (Rat) LD50: >39800 mg/kg ^[2]		
	Oral (Rat) LD50: >39800 mg/kg ^[2]		
	Oral (Rat) LD50: >5000 mg/kg ^[1]		
	Oral (Rat) LD50: 31000 mg/kg ^[2]		
	Oral (Rat) LD50: 31000 mg/kg ^[2]		
	Oral (Rat) LD50: 33600 mg/kg ^[2]		
	TOXICITY	IRRITATION	
ethoxydimethylsilane	Inhalation (Rat) LC50: >4.7 mg/L4h ^[1]	Eye: no adverse effect observed (not irritating) ^[1]	
	Oral (Rat) LD50: 3602 mg/kg ^[2]	Skin: no adverse effect observed (not irritating) ^[1]	

FATTY ACIDS, C4-24, ESTERS WITH SORBITAN

For Group D aliphatic esters:(sorbitan fatty esters)

Sorbitan fatty acid esters are mono-, di-, and triesters of fatty acids and sorbitol-derived hexitol anhydrides. Sorbitan fatty acid esters were relatively nontoxic via ingestion in acute and long-term studies. They were generally minimal to mild skin irritants in animal studies, except that sorbitan isostearate applied to the skin was a moderate irritant in one rabbit study and when injected intradermally caused mild to severe irritation in guinea pigs. Sorbitan fatty acid esters did not sensitise guinea pigs. The fatty acid component, tested alone, typically caused only slight irritation and sensitisation, and was not photosensitising. Sorbitan fatty acid esters were not ocular irritants. Fatty acids are normal components of diet for which

Issue Date: 10/28/2024 Print Date: 11/11/2024

no data were available concerning reproductive or developmental toxicity, but Sorbitol had no adverse effects on the reproduction of CD rats during a multigeneration feeding study and was not a reproductive toxin at doses of 3000 to 7000 mg/kg/day for 2 years. Overall these esters and their corresponding fatty acids were not mutagenic, but sorbitan oleate was reported to reduce DNA repair following ultraviolet radiation exposure in human lymphocytes in culture. Sorbitan laurate and sorbitan trioleate were cocarcinogens in one mouse study, but sorbitan trioleate and sorbitan oleate were not tumour promoters in another study. In clinical tests, Sorbitan fatty acid esters were generally minimal to mild skin irritants and were nonsensitizing, but sorbitan sesquioleate did produce an allergic reaction in fewer than 1% of patients with suspected contact dermatitis and addition of sorbitan sesquioleate to the components of a fragrance mix used in patch testing increased both irritant and allergic reactions to the fragrance mix. Careful consideration was made of the data on the cocarcinogenesis of sorbitan laurate and sorbitan trioleate, but the high exposure levels, high frequency of exposure, and absence of a doseresponse led to the conclusion that there was not a cocarcinogenesis risk with the use of these ingredients in cosmetic formulations. Accordingly, these ingredients were considered safe for use in cosmetic formulations under the present practices of use.

Final report on the safety assessment of sorbitan caprylate, sorbitan cocoate, sorbitan diisostearate, sorbitan dioleate, sorbitan distearate, sorbitan isostearate, sorbitan olivate, sorbitan sesquisostearate, sorbitan sesquistearate, and sorbitan triisostearate Lanigan et al Int J. Toxicol 2002, pp 93-112

According to a classification scheme described by the American Chemistry Council' Aliphatic Esters Panel, Group D substances are esters of monoacids, mainly common fatty acids, and sorbitan (which is derived from sorbitol - a natural carbohydrate sweetener). The fatty acids include lauric, stearic, oleic acids and coca fatty acids (mainly lauric and myristic acids). The hydroxy group in the sorbitan represents the alcohol portion of the ester linkage. The Group D esters are carbohydrate-derived esters since the ester linkage is connected to the hydroxy group(s) of sorbitan. They may have single ester linkages (i.e., sorbitan monoester) or may have multiple ester linkages, as in the case of sorbitan sesquioleate and sorbitan trioleate. Multiple ester linkages with long-chain fatty acids increase lipophilicity and also tend to diminish water solubility. The sorbitan esters are non-ionic surfactant-active agents that typically find use as emulsifiers, stabilizers, and thickeners in foods, cosmetics and medical products.

Acute toxicity: Sorbitan esters do not represent a toxicological concern since they are derived from naturally occurring materials and the parent esters are ultimately metabolised back to these same natural constituents: namely, sorbitan and common fatty acids, both of which have low orders of toxicity. The oral LD50 in rats ranged from >2.9 g/kg to > 39.8 g/kg. Numerous sorbitan esters have been studied by acute oral and dermal administration. Results from these studies support the general conclusion that sorbitan fatty acid esters have low orders of acute toxicity.

Repeated Dose Toxicity. A large number of subchronic oral and dermal studies and chronic oral feeding studies have been carried out for sorbitan monolaurate, sorbitan monostearate and sorbitan monooleate. For sorbitan monostearate, no adverse effects were reported in rats fed 5% concentrations of the test substance in the diet for 6 weeks. The NOAEL was estimated to be 5% or approximately 2500 mg/kg/day. In 2-year feeding studies at 5, 10 and 20% in the diet rats tolerated sorbitan moonostearate with no adverse effects. However, at 20%, there was a small but significant decrease on growth rate in male rates. Hence, the NOAEL was 10% in the diet or approximately 5000 mg/kg/day in rats, based on these findings. In a 80-week dietary study in mice, no adverse effects were observed for sorbitan monostearate at 2% concentration in the diet and the NOAEL was 2% or approximately 2600 mg/kg/day . Subchronic studies have also been carried out with sorbitan, fatty acids C6-10, tetraester (CAS 228573-47-5).. Oral gavage studies for 28 days at dose levels up to 1000 mg/kg /day resulted in no systemic toxicity. Therefore, the NOAEL was 1000 mg/kg/day for this tetraester.

Since the sesquioleate and trioleate of sorbitan are merely multiple ester homologs of sorbitan monooleate, they would be expected to show similar effects, given their structural similarities and potential to be metabolised to the monooleate. Sensitisation: Sorbitan fatty acid esters were generally minimal to mild skin irritants and were nonsensitising, but sorbitan sesquioleate did produce an allergic reaction in fewer than 1% of patients with suspected contact dermatitis and addition of sorbitan sesquioleate to the components of a fragrance mix used in patch testing increased both irritant and allergic reactions to the fragrance mix.

Reproductive and developmental toxicity: Limited reproductive toxicity data have been reported for the sorbitan esters. In a 2-year feeding studies in rats with sorbitan monostearate, there were no effects on gestation and fertility at any dose level (0, 5, 10 and 20% in the diet) but survival of the newborn animals and maternal lactation were slightly diminished at the 20% level. Sorbitol was also studied indirectly as part of a mixture of hydrogenated starch hydrolysates (HSH) which contained about 7% sorbitol as part of the polyhydric alcohol mixture. The HSH mixture was investigated as part of a two-year ingestion study, a multigeneration reproduction study and a teratology study. At concentrations of 18% in drinking water (3000-7000 mg/kg/day), HSH did not produce reproductive or developmental effects. These results indicate that sorbitol does not cause reproductive/ developmental toxicity in animals. Given these findings and the low order of toxicity of natural fatty acids, it seems unlikely that sorbitan esters would present reproductive and developmental toxicity concerns.

Genotoxicity: Sorbitan monostearate (CAS 1338-41-6) was found to be negative in the Ames assay. In addition, the non-HPV substance, sorbitan fatty acid C6-10 tetraester (CAS 228573-47-5), did not cause any mutagenic effects in the Salmonella in vitro test. These substances bridge the low and high carbon range of most of the sorbitan esters and the chemistry of the sorbitan esters (i.e., sorbitan/ sorbitol, natural fatty acids) does not suggest the likelihood that the sorbitan esters are electrophilic or reactive in nature. Thus, it is not likely that the substances in Group D cause mutagenic effects. Sorbitan monostearate did not transform primary Syrian golden hamster embryo cells. As discussed above for point mutation, the chemistry of the sorbitan esters does not suggest the likelihood that these substances, or their constituent substructures (i.e., sorbitol, fatty acids) are reactive or electrophilic in nature.

Carcinogenicity: Overall these esters and their corresponding fatty acids were not mutagenic, but sorbitan oleate was reported to reduce DNA repair following ultraviolet radiation exposure in human lymphocytes in culture, sorbitan laurate and sorbitan trioleate were cocarcinogens in one mouse study, but sorbitan trioleate and sorbitan oleate were not tumour promoters in another study.

DIMETHOXYDIMETHYLSILANE

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is

Version No: 2.6

AV8

Issue Date: 10/28/2024
Print Date: 11/11/2024

completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

Studies indicate that normal, branched and cyclic paraffins are absorbed from the mammalian gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent that iso- or cyclo-paraffins.

The major classes of hydrocarbons have been shown to be well absorbed by the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with dietary lipids. The dependence of hydrocarbon absorption on concomitant triglyceride digestion and absorption, is known as the "hydrocarbon continuum hypothesis", and asserts that a series of solubilising phases in the intestinal lumen, created by dietary triglycerides and their digestion products, afford hydrocarbons a route to the lipid phase of the intestinal absorptive cell (enterocyte) membrane. While some hydrocarbons may traverse the mucosal epithelium unmetabolised and appear as solutes in lipoprotein particles in intestinal lymph, there is evidence that most hydrocarbons partially separate from nutrient lipids and undergo metabolic transformation in the enterocyte. The enterocyte may play a major role in determining the proportion of an absorbed hydrocarbon that, by escaping initial biotransformation, becomes available for deposition in its unchanged form in peripheral tissues such as adipose tissue, or in the liver.

Durable Polymer & NAPHTHA PETROLEUM, ISOPARAFFIN, HYDROTREATED

For petroleum: This product contains benzene, which can cause acute myeloid leukaemia, and n-hexane, which can be metabolized to compounds which are toxic to the nervous system. This product contains toluene, and animal studies suggest high concentrations of toluene lead to hearing loss. This product contains ethyl benzene and naphthalene, from which animal testing shows evidence of tumour formation.

Cancer-causing potential: Animal testing shows inhaling petroleum causes tumours of the liver and kidney; these are however not considered to be relevant in humans.

Mutation-causing potential: Most studies involving gasoline have returned negative results regarding the potential to cause mutations, including all recent studies in living human subjects (such as in petrol service station attendants).

Reproductive toxicity: Animal studies show that high concentrations of toluene (>0.1%) can cause developmental effects such as lower birth weight and developmental toxicity to the nervous system of the foetus. Other studies show no adverse effects on the foetus.

Human effects: Prolonged or repeated contact may cause defatting of the skin which can lead to skin inflammation and may make the skin more susceptible to irritation and penetration by other materials.

Animal testing shows that exposure to gasoline over a lifetime can cause kidney cancer, but the relevance in humans is questionable.

KAOLIN, CALCINED & NAPHTHA PETROLEUM, ISOPARAFFIN, HYDROTREATED

No significant acute toxicological data identified in literature search.

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	~	Reproductivity	×
Serious Eye Damage/Irritation	~	STOT - Single Exposure	~
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend:

🗶 – Data either not available or does not fill the criteria for classification

✓ – Data available to make classification

SECTION 12 Ecological information

Toxicity

Durable Polymer	Endpoint	Test Duration (hr)	Species	Value	Source
	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50	72h	Algae or other aquatic plants	410mg/l	2
kaolin, calcined	EC50	48h	Crustacea	>100mg/l	2
	LC50	96h	Fish	>100mg/l	2
	NOEC(ECx)	0.5h	Fish	10mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
naphtha petroleum,	EC50	48h	Crustacea	>0.002mg/l	2
isoparaffin, hydrotreated	EC50(ECx)	48h	Crustacea	>0.002mg/l	2
	EC50	96h	Algae or other aquatic plants	64mg/l	2
Fatty acids, C4-24, esters	Endpoint	Test Duration (hr)	Species	Value	Source
with sorbitan	NOEC(ECx)	96h	Fish	56mg/l	1

Page 14 of 19 Issue Date: 10/28/2024
Print Date: 11/11/2024

	EC50	48h	Crustacea	>0.43mg/l	2
	NOEC(ECx)	48h	Crustacea	0.43mg/l	2
	LC50	96h	Fish	>100mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50	72h	Algae or other aquatic plants	>118mg/l	2
dimethoxydimethylsilane	NOEC(ECx)	768h	Fish	>=12mg/l	2
	EC50	48h	Crustacea	>100mg/l	2
	LC50	96h	Fish	>126mg/l	2
Legend:	Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data				

AV8

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

When released in the environment, alkanes don't undergo rapid biodegradation, because they have no functional groups (like hydroxyl or carbonyl) that are needed by most organisms in order to metabolize the compound.

However, some bacteria can metabolise some alkanes (especially those linear and short), by oxidizing the terminal carbon atom. The product is an alcohol, that could be next oxidised to an aldehyde, and finally to a carboxylic acid. The resulting fatty acid could be metabolised through the fatty acid degradation pathway. Bentonite and kaolin have low toxicity to aquatic species, a large number of which have been tested

For petroleum distillates:

Environmental fate:

When petroleum substances are released into the environment, four major fate processes will take place: dissolution in water, volatilization, biodegradation and adsorption. These processes will cause changes in the composition of these UVCB substances. In the case of spills on land or water surfaces, photodegradation-another fate process-can also be significant.

As noted previously, the solubility and vapour pressure of components within a mixture will differ from those of the component alone. These interactions are complex for complex UVCBs such as petroleum hydrocarbons.

Each of the fate processes affects hydrocarbon families differently. Aromatics tend to be more water-soluble than aliphatics of the same carbon number, whereas aliphatics tend to be more volatile. Thus, when a petroleum mixture is released into the environment, the principal water contaminants are likely to be aromatics, whereas aliphatics will be the principal air contaminants. The trend in volatility by component class is as follows: alkenes = alkanes > aromatics = cycloalkanes. The most soluble and volatile components have the lowest molecular weight; thus there is a general shift to higher molecular weight components in residual materials.

Biodegradation:

Biodegradation is almost always operative when petroleum mixtures are released into the environment. It has been widely demonstrated that nearly all soils and sediments have populations of bacteria and other organisms capable of degrading petroleum hydrocarbons Degradation occurs both in the presence and absence of oxygen. Two key factors that determine degradation rates are oxygen supply and molecular structure. In general, degradation is more rapid under aerobic conditions. Decreasing trends in degradation rates according to structure are as follows:

- (1) n-alkanes, especially in the C10-C25 range, which are degraded readily;
- (2) isoalkanes;
- (3) alkenes;
- (4) benzene, toluene, ethylbenzene, xylenes (BTEX) (when present in concentrations that are not toxic to microorganisms);
- (5) monoaromatics;
- (6) polynuclear (polycyclic) aromatic hydrocarbons (PAHs); and $\,$
- (7) higher molecular weight cycloalkanes (which may degrade very slowly.

Three weathering processes-dissolution in water, volatilization and biodegradation-typically result in the depletion of the more readily soluble, volatile and degradable compounds and the accumulation of those most resistant to these processes in residues.

When large quantities of a hydrocarbon mixture enter the soil compartment, soil organic matter and other sorption sites in soil are fully saturated and the hydrocarbons will begin to form a separate phase (a non-aqueous phase liquid, or NAPL) in the soil. At concentrations below the retention capacity for the hydrocarbon in the soil, the NAPL will be immobile this is referred to as residual NAPL. Above the retention capacity, the NAPL becomes mobile and will move within the soil

Bioaccumulation:

Bioaccumulation potential was characterized based on empirical and/or modelled data for a suite of petroleum hydrocarbons expected to occur in petroleum substances. Bioaccumulation factors (BAFs) are the preferred metric for assessing the bioaccumulation potential of substances, as the bioconcentration factor (BCF) may not adequately account for the bioaccumulation potential of substances via the diet, which predominates for substances with log Kow > ~4.5 In addition to fish BCF and BAF data, bioaccumulation data for aquatic invertebrate species were also considered. Biota-sediment/soil accumulation factors (BSAFs), trophic magnification factors and biomagnification factors were also considered in characterizing bioaccumulation potential.

Overall, there is consistent empirical and predicted evidence to suggest that the following components have the potential for high bioaccumulation, with BAF/BCF values greater than 5000: C13–C15 isoalkanes, C12 alkenes, C12–C15 one-ring cycloalkanes, C12 and C15 two-ring cycloalkanes, C14 polycycloalkanes, C15 one-ring aromatics, C15 and C20 cycloalkane monoaromatics, C12–C13 diaromatics, C20 cycloalkane diaromatics, and C14 and C20 three-ring PAHs These components are associated with a slow rate of metabolism and are highly lipophilic. Exposures from water and diet, when combined, suggest that the rate of uptake would exceed that of the total elimination rate. Most of these components are not expected to biomagnify in aquatic or terrestrial foodwebs, largely because a combination of metabolism, low dietary assimilation efficiency and growth dilution allows the elimination rate to exceed the uptake rate from the diet; however.

one study suggests that some alkyl-PAHs may biomagnify. While only BSAFs were found for some PAHs, it is possible that BSAFs will be > 1 for invertebrates, given that they do not have the same metabolic competency as fish.

In general, fish can efficiently metabolize aromatic compounds. There is some evidence that alkylation increases bioaccumulation of naphthalene but it is not known if this can be generalized to larger PAHs or if any potential increase in bioaccumulation due to alkylation will be sufficient to exceed a BAF/BCF of 5000. Some lower trophic level organisms (i.e., invertebrates) appear to lack the capacity to efficiently metabolize aromatic compounds, resulting in high bioaccumulation potential for some aromatic components as compared to fish.

This is the case for the C14 three-ring PAH, which was bioconcentrated to a high level (BCF > 5000) by invertebrates but not by fish. There is potential for such bioaccumulative components to reach toxic levels in organisms if exposure is continuous and of sufficient magnitude, though this is unlikely in the water column

Page 15 of 19 AV8

Issue Date: 10/28/2024 Print Date: 11/11/2024

following a spill scenario due to relatively rapid dispersal

Bioaccumulation of aromatic compounds might be lower in natural environments than what is observed in the laboratory. PAHs may sorb to organic material suspended in the water column (dissolved humic material), which decreases their overall bioavailability primarily due to an increase in size. This has been

Diesel fuel studies in salt water are available. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna. demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L

The tropical mysid Metamysidopsis insularis was shown to be very sensitive to diesel fuel, with a 96-hour LC50 value of 0.22 mg/L this species has been shown to be as sensitive as temperate mysids to toxicants. However, However this study used nominal concentrations, and therefore was not considered acceptable. In another study involving diesel fuel, the effect on brown or common shrimp (Crangon crangon) a 96-hour LC50 of 22 mg/L was determined. A "gas oil" was also tested and a 96-hour LC50 of 12 mg/L.was determined

The steady state cell density of marine phytoplankton decreased with increasing concentrations of diesel fuel, with different sensitivities between species . The diatom Phaeodactylum tricornutum showed a 20% decrease in cell density in 24 hours following a 3 mg/L exposure with a 24-hour no-observed effect concentration (NOEC) of 2.5 mg/L. The microalga Isochrysis galbana was more tolerant to diesel fuel, with a 24-hour lowest-observed-effect concentration (LOEC) of 26 mg/L (14% decrease in cell density), and a NOEC of 25 mg/L.

Finally, the green algae Chlorella salina was relatively insensitive to diesel fuel contamination, with a 24-hour LOEC of 170 mg/L (27% decrease in cell density), and a NOEC of 160 mg/L . All populations of phytoplankton returned to a steady state within 5 days of exposure

In sandy soils, earthworm (Eisenia fetida) mortality only occurred at diesel fuel concentrations greater than 10 000 mg/kg, which was also the concentration at which sub-lethal weight loss was recorded

Nephrotoxic effects of diesel fuel have been documented in several animal and human studies. Some species of birds (mallard ducks in particular) are generally resistant to the toxic effects of petrochemical ingestion, and large amounts of petrochemicals are needed in order to cause direct mortality

Drinking Water Standards: hydrocarbon total: 10 ug/l (UK max.).

For hydrocarbons:

Environmental fate:

The lower molecular weight hydrocarbons are expected to form a "slick" on the surface of waters after release in calm sea conditions. This is expected to evaporate and enter the atmosphere where it will be degraded through reaction with hydroxy radicals.

Some hydrocarbon will become associated with benthic sediments, and it is likely to be spread over a fairly wide area of sea floor. Marine sediments may be either aerobic or anaerobic. The material, in probability, is biodegradable, under aerobic conditions (isomerised olefins and alkenes show variable results). Evidence also suggests that the hydrocarbons may be degradable under anaerobic conditions although such degradation in benthic sediments may be a relatively slow process. Under aerobic conditions hydrocarbons degrade to water and carbon dioxide, while under anaerobic processes they produce water, methane and carbon dioxide. Alkenes have low log octanol/water partition coefficients (Kow) of about 1 and estimated bioconcentration factors (BCF) of about 10; aromatics have intermediate values (log Kow values of 2-3 and BCF values of 20-200), while C5 and greater alkanes have fairly high values (log Kow values of about 3-4.5 and BCF values of

The estimated volatilisation half-lives for alkanes and benzene, toluene, ethylbenzene, xylene (BTEX) components were predicted as 7 days in ponds, 1.5 days in rivers, and 6 days in lakes. The volatilisation rate of naphthalene and its substituted derivatives were estimated to be slower.

Indigenous microbes found in many natural settings (e.g., soils, groundwater, ponds) have been shown to be capable of degrading organic compounds. Unlike other fate processes that disperse contaminants in the environment, biodegradation can eliminate the contaminants without transferring them across media. The final products of microbial degradation are carbon dioxide, water, and microbial biomass. The rate of hydrocarbon degradation depends on the chemical composition of the product released to the environment as well as site-specific environmental factors. Generally the straight chain hydrocarbons and the aromatics are degraded more readily than the highly branched aliphatic compounds. The n-alkanes, n-alkyl aromatics, and the aromatics in the C10-C22 range are the most readily biodegradable; n-alkanes, n-alkyl aromatics, and aromatics in the C5-C9 range are biodegradable at low concentrations by some microorganisms, but are generally preferentially removed by volatilisation and thus are unavailable in most environments; n-alkanes in the C1-C4 ranges are biodegradable only by a narrow range of specialised hydrocarbon degraders; and n-alkanes, n-alkyl aromatics, and aromatics above C22 are generally not available to degrading microorganisms. Hydrocarbons with condensed ring structures, such as PAHs with four or more rings, have been shown to be relatively resistant to biodegradation. PAHs with only 2 or 3 rings (e.g., naphthalene, anthracene) are more easily biodegraded. In almost all cases, the presence of oxygen is essential for effective biodegradation of oil. The ideal pH range to promote biodegradation is close to neutral (6-8). For most species, the optimal pH is slightly alkaline, that is, greater than 7.

All biological transformations are affected by temperature. Generally, as the temperature increases, biological activity tends to increase up to a temperature where enzyme denaturation occurs.

Atmospheric fate: Alkanes, isoalkanes, and cycloalkanes have half-lives on the order of 1-10 days, whereas alkenes, cycloalkenes, and substituted benzenes have half-lives of 1 day or less. Photochemical oxidation products include aldehydes, hydroxy compounds, nitro compounds, and peroxyacyl nitrates. Alkenes, certain substituted aromatics, and naphthalene are potentially susceptible to direct photolysis.

Ecotoxicity:

Hydrocarbons are hydrophobic (high log Kow and low water solubility). Such substances produce toxicity in aquatic organisms by a mechanism referred to as "non-polar narcosis" or "baseline" toxicity. The hydrophobicity increases and water solubility decreases with increasing carbon number for a particular class of hydrocarbon. Substances with the same carbon number show increased hydrophobicity and decreased solubility with increasing saturation. Quantitative structure activity relationships (QSAR), relating both solubility and toxicity to Kow predict that the water solubility of single chemical substances decreases more rapidly with increasing Kow than does the acute toxicity.

Based on test results, as well as theoretical considerations, the potential for bioaccumulation may be high. Toxic effects are often observed in species such as blue mussel, daphnia, freshwater green algae, marine copepods and amphipods.

The values of log Kow for individual hydrocarbons increase with increasing carbon number within homologous series of generic types. Quantitative structure activity relationships (QSAR), relating log Kow values of single hydrocarbons to toxicity, show that water solubility decreases more rapidly with increasing Kow than does the concentration causing effects. This relationship varies somewhat with species of hydrocarbon, but it follows that there is a log Kow limit for hydrocarbons, above which, they will not exhibit acute toxicity; this limit is at a log Kow value of about 4 to 5. It has been confirmed experimentally that for fish and invertebrates, paraffinic hydrocarbons with a carbon number of 10 or higher (log Kow >5) show no acute toxicity and that alkylbenzenes with a carbon number of 14 or greater (log Kow >5) similarly show no acute toxicity.

QSAR equations for chronic toxicity also suggest that there should be a point where hydrocarbons with high log Kow values become so insoluble in water that they will not cause chronic toxicity, that is, that there is also a solubility cut-off for chronic toxicity. Thus, paraffinic hydrocarbons with carbon numbers of greater than 14 (log Kow >7.3) should show no measurable chronic toxicity. Experimental support for this cut-off is demonstrated by chronic toxicity studies on lubricant base oils and one "heavy" solvent grade (substances composed of paraffins of C20 and greater) which show no effects after exposures to concentrations well above solubility.

The initial criteria for classification of substances as dangerous to the aquatic environment are based upon acute toxicity data in fish, daphnids and algae. However, for substances that have low solubility and show no acute toxicity, the possibility of a long-term or chronic hazard to the environment is recognised in the

Page 16 of 19 Issue Date: 10/28/2024 Version No: 2.6 Print Date: 11/11/2024

R53 phrase or so-called "safety net". The R53 assignment for possible long-term harm is a surrogate for chronic toxicity test results and is triggered by substances that are both bioaccumulative and persistent. The indicators of bioaccumulation and persistence are taken as a BCF > 100 (or log Kow > 3 if no BCF data) and lack of ready biodegradability. For low solubility substances which have direct chronic toxicity data demonstrating no chronic toxicity at 1 mg/L or higher, these data take precedence such that no classification for long term toxicity is required. DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
Fatty acids, C4-24, esters with sorbitan	LOW	LOW
dimethoxydimethylsilane	HIGH	HIGH

Bioaccumulative potential

Ingredient	Bioaccumulation	
Fatty acids, C4-24, esters with sorbitan	HIGH (LogKOW = 6.1001)	
dimethoxydimethylsilane	LOW (LogKOW = 0.585)	

Mobility in soil

Ingredient	Mobility
Fatty acids, C4-24, esters with sorbitan	LOW (Log KOC = 14.36)
dimethoxydimethylsilane	LOW (Log KOC = 192)

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal

- ▶ **DO NOT** allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- ▶ Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Authority for disposal.
- ▶ Bury or incinerate residue at an approved site.
- · Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 Transport information

Labels Required

Marine Pollutant	NO

Land transport (DOT): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
kaolin, calcined	Not Available
naphtha petroleum, isoparaffin, hydrotreated	Not Available
Fatty acids, C4-24, esters with sorbitan	Not Available
dimethoxydimethylsilane	Not Available

Page 17 of 19 Issue Date: 10/28/2024 Version No: 2.6 Print Date: 11/11/2024 AV8

14.7.3. Transport in bulk in accordance with the IGC Code

Product name	Ship Type
kaolin, calcined	Not Available
naphtha petroleum, isoparaffin, hydrotreated	Not Available
Fatty acids, C4-24, esters with sorbitan	Not Available
dimethoxydimethylsilane	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

kaolin, calcined is found on the following regulatory lists

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

US - Alaska Air Quality Control - Concentrations Triggering an Air Quality Episode for Air Pollutants Other Than PM-2.5

US NIOSH Recommended Exposure Limits (RELs)

US OSHA Permissible Exposure Limits (PELs) Table Z-1

US OSHA Permissible Exposure Limits (PELs) Table Z-3

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

naphtha petroleum, isoparaffin, hydrotreated is found on the following regulatory lists

Chemical Footprint Project - Chemicals of High Concern List

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic

US DOE Temporary Emergency Exposure Limits (TEELs)

US OSHA Permissible Exposure Limits (PELs) Table Z-1

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

Fatty acids, C4-24, esters with sorbitan is found on the following regulatory lists

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

US - Alaska Air Quality Control - Concentrations Triggering an Air Quality Episode for Air Pollutants Other Than PM-2.5

US NIOSH Recommended Exposure Limits (RELs)

US OSHA Permissible Exposure Limits (PELs) Table Z-1

US OSHA Permissible Exposure Limits (PELs) Table Z-3

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

dimethoxydimethylsilane is found on the following regulatory lists

US DOE Temporary Emergency Exposure Limits (TEELs)

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

Additional Regulatory Information

Not Applicable

Federal Regulations

Superfund Amendments and Reauthorization Act of 1986 (SARA)

Section 311/312 hazard categories

Flammable (Gases, Aerosols, Liquids, or Solids)	Yes
Gas under pressure	No
Explosive	No
Self-heating	No
Pyrophoric (Liquid or Solid)	No
Pyrophoric Gas	No
Corrosive to metal	No
Oxidizer (Liquid, Solid or Gas)	No
Organic Peroxide	No
Self-reactive	No
In contact with water emits flammable gas	No
Combustible Dust	No
Carcinogenicity	No

Part Number: AV8 Page 18 of 19

Issue Date: 10/28/2024 Version No: 2.6 Print Date: 11/11/2024

AV8

Acute toxicity (any route of exposure)	No
Reproductive toxicity	No
Skin Corrosion or Irritation	Yes
Respiratory or Skin Sensitization	No
Serious eye damage or eye irritation	Yes
Specific target organ toxicity (single or repeated exposure)	Yes
Aspiration Hazard	No
Germ cell mutagenicity	No
Simple Asphyxiant	No
Hazards Not Otherwise Classified	No

US. EPA CERCLA Hazardous Substances and Reportable Quantities (40 CFR 302.4)

None Reported

US. EPCRA Section 313 Toxic Release Inventory (TRI) (40 CFR 372)

None Reported

Additional Federal Regulatory Information

Not Applicable

State Regulations

US. California Proposition 65

None Reported

Additional State Regulatory Information

Not Applicable

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	No (dimethoxydimethylsilane)
Canada - NDSL	No (kaolin, calcined; naphtha petroleum, isoparaffin, hydrotreated)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	No (kaolin, calcined)
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	No (dimethoxydimethylsilane)
Vietnam - NCI	Yes
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	29/08/2024
Initial Date	29/08/2024

Other information

Ingredients with multiple cas numbers

Name	CAS No
kaolin, calcined	92704-41-1, 39388-40-4, 66402-68-4

Page 19 of 19

Issue Date: 10/28/2024 Print Date: 11/11/2024 AV8

Name	CAS No
naphtha petroleum, isoparaffin, hydrotreated	64742-48-9., 101795-02-2., 64771-72-8.
Fatty acids, C4-24, esters with sorbitan	97281-21-5, 1338-39-2, 5959-89-7, 26266-57-9, 5050-91-9, 54392-26-6, 71902-01-7, 71812-38-9, 68238-87-9, 1338-43-8, 37318-79-9, 8007-43-0, 29116-98-1, 26266-58-0, 1338-41-6, 5093-91-4, 56451-84-4, 51938-44-4, 36521-89-8, 26658-19-5

Classification of the preparation and its individual components has drawn on official and authoritative sources using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

- ▶ PC-TWA: Permissible Concentration-Time Weighted Average
- ▶ PC-STEL: Permissible Concentration-Short Term Exposure Limit
- ▶ IARC: International Agency for Research on Cancer
- ▶ ACGIH: American Conference of Governmental Industrial Hygienists
- ▶ STEL: Short Term Exposure Limit
- TEEL: Temporary Emergency Exposure Limit,
 IDLH: Immediately Dangerous to Life or Health Concentrations
- ES: Exposure Standard
- OSF: Odour Safety Factor
- ▶ NOAEL: No Observed Adverse Effect Level
- ▶ LOAEL: Lowest Observed Adverse Effect Level
- ▶ TLV: Threshold Limit Value
- ▶ LOD: Limit Of Detection
- OTV: Odour Threshold Value
- ▶ BCF: BioConcentration Factors
- ▶ BEI: Biological Exposure Index
- ▶ DNEL: Derived No-Effect Level
- ▶ PNEC: Predicted no-effect concentration
- AIIC: Australian Inventory of Industrial Chemicals
- ▶ DSL: Domestic Substances List
- NDSL: Non-Domestic Substances List
- ▶ IECSC: Inventory of Existing Chemical Substance in China
- ▶ EINECS: European INventory of Existing Commercial chemical Substances
- ▶ ELINCS: European List of Notified Chemical Substances
- NLP: No-Longer Polymers
- ▶ ENCS: Existing and New Chemical Substances Inventory
- KECI: Korea Existing Chemicals Inventory
- ▶ NZIoC: New Zealand Inventory of Chemicals
- ▶ PICCS: Philippine Inventory of Chemicals and Chemical Substances
- ▶ TSCA: Toxic Substances Control Act
- ▶ TCSI: Taiwan Chemical Substance Inventory
- INSQ: Inventario Nacional de Sustancias Químicas
- NCI: National Chemical Inventory
- ▶ FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances